Loughton School Progression in calculations

The national curriculum for mathematics aims to ensure that all pupils:

- Become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- Reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- Can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions

This policy outlines the progression for calculations in addition, subtraction, multiplication and division at Loughton School. This policy has been written to ensure consistency and progression throughout the school.

We believe our children will be able to:

- understand important concepts and make connections within mathematics
- show high levels of fluency in performing written and mental calculations
- be taught consistent calculation strategies
- be ready for the next stage of learning
- have a smooth transition between phases
- be able to add, subtract, multiply and divide efficiently
- be competent in fluency, reasoning and problem solving.

Choosing the appropriate strategy and recording mathematically (for calculation in particular) is an important tool both for furthering the understanding of ideas and for communicating those ideas to others.

A useful written method is one that helps children carry out a calculation and can be understood by others. Written methods are complementary to mental methods and should not be seen as separate from them.

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence. It is important children acquire secure mental methods of calculation and one efficient written method of calculation for addition, subtraction, multiplication and division which they know they can rely on when mental methods are not appropriate.

Mathematical vocabulary

High expectations of the mathematical language used are essential, with staff only accepting what is correct. Consistency across the school is key.

<u>Correct terminology</u> (since new 2014 curriculum)

ones is equal to (is the same as) zero exchange / exchanging regrouping calculation / equation / number sentence commutative bridge Incorrect terminology (what you may have used previously)

units

equals oh (the letter o) stealing borrowing carrying generic term of 'sum' swap/move

whole and part - particularly useful when using bar modelling

Mathematical representation

Consistency across the school for number representation: Headings for columns need to be consistent so that children understand the value of each digit.

M Hth Tth Th H T O . $\frac{1}{10}$ $\frac{1}{100}$ $\frac{1}{1000}$

part

part

whole - part = part

whole - part = part

Bar modelling should be used as a regular representation throughout topics.

Whole	
Part	Part
+ <mark>part</mark> = whole + part = whole	Adapt for multiplication division, fractions etc

Progression in Manipulatives						
Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real life objects	Real life objects	Real life objects	Real life objects	Real life objects	Real life objects	Real life objects
0 - 9 digit cards	0 - 9 digit cards	0 - 9 digit cards	0 - 9 digit cards	0 - 9 digit cards	0 - 9 digit cards	0 - 9 digit cards
Number track to 10	Number line to 20	Number line to 100	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
Counting stick	Counting stick	Counting stick	Counting stick	Counting stick	Counting stick	Counting stick
Tens frame	Tens frame	Tens frame	Tens frame	Tens frame	Tens frame	Tens frame
Bead strings 10	Bead strings 20	Bead strings 100	Bead strings 100	Bead strings 100	Bead strings 100	Bead strings 100
Interlocking cubes - use one colour to represent one amount	Interlocking cubes - use one colour to represent one amount	Base 10	Base 10	Base 10	Base 10	Base 10
		Place Value counters	Place Value counters	Place Value counters	Place Value counters	Place Value counters
	Arrow cards - tens and ones	Arrow card - tens and ones	Arrow card - Hundreds, tens and ones	Arrow card - thousands, hundreds, tens and ones	Arrow card - thousands, hundreds, tens and ones, including decimals	Arrow card - thousands, hundreds, tens and ones, including decimals
Part part whole model	Part part whole model	Part part whole model	Part part whole model	Part part whole model	Part part whole model	Part part whole model
Bar model with real life model objects	Bar model with real life objects, pictorial representationseg counters	Bar models with counters/ base 10 progressing to numbers	Bar models with numbers	Bar models with numbers	Bar models with numbers	Bar models with numbers
Numicon	Numicon	Numicon	Numicon	Numicon	Numicon	Numicon
			Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods
Double sided counters	Double sided counters	Double sided counters	Double sided counters	Double sided counters	Double sided counters	Double sided counters
Multilink - use one colourto model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount

Progression in calculations

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: partwhole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method (tens and ones) - no exchanging.	Column method with exchange (up to 3 digits)	Column method with exchange (up to 4 digits)	Column method with exchange (with more than 4 digits) Column method with decimals - with the same amount of decimal places.	Column method with exchange (with more than 4 digits) Column method with decimals - with a different amount of decimal places.
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column method - no exchanging	Column method with exchange (up to 3 digits)	Column method with exchange (up to 4 digits)	Column method with exchange (with more than 4 digits) Column method with decimals - with the same amount of decimal places.	Column method with exchange (with more than 4 digits) Column method with decimals - with a different amount of decimal places.
Multiplication	Doubling Counting in multiples Arrays	Doubling Counting in multiples Arrays-showing commutative multiplication Repeated addition	Counting in multiples Arrays- showing commutative multiplication Repeated addition Visual grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit multiplied by 1 or 2 digit)	Column multiplication (multi-digit numbers up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping	Division as grouping Division with arrays	Division with arrays Division with a remainder Short division (2 digit by a 1 digit, pictorial and abstract representation)	Division with arrays Division with a remainder Short division (3 digit by a 1 digit, pictorial and abstract representation)	Short division (up to 4 digits by 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to a 4 digit number by a 2 digit number- interpret remainders whole numbers, fractions or a round)

Key Vocabulary:

add, addition, plus, and, count on, more, sum, total, altogether, increase, balance, much, inverse, double, near double.

Teachers need to model the language of addend + addend = sum/total.

Objective and strategies	Concrete	Pictorial	Abstract
Combining two parts to make a part-part- whole model. (Aggregation)	Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	Use the part-part- whole diagram as shown to move into the abstract.
Whole Part Part part + part = whole part + part = whole		3 part 9 part 9 par	8
<pre> is a part and is a part, the parts add</pre>		Balls 2 Balls	3 5 4 + 3 = 7
together to make the whole. The whole is	10		10= 6 + 4

Objective and strategies	Concrete	Pictorial	Abstract
Starting at the bigger number and counting on. (Augmentation) Step 1: The	Start with the greater number on the bead string and count on the smaller number one by one to find the sum/total.	Start at the greater number on the number line and count on the smaller number in ones, or in one	Place the greater number in your head and count on the smaller number to find the sum/total.
greater number is		jump, to find the sum/ total.	5 + 12 = 17 *image purposefully shown
Step 2: The smaller number is Step 3: I start with I count on The total is	Use a variety of resources to make the bigger number and then count on in ones while adding on the smaller number.		as children will see calculations in a range of ways and they need to use the commutative law and still begin with the greatest number.

Objective and strategies	Concrete	Pictorial	Abstract
Using known facts.	Use cubes, objects, base 10, place value	Draw representations of H, T and O using	3 + 7 = 10 30 + 70 = 100
Adding multiples of 10. I know that + =	counters and Numicon to make number bonds, flout los/halves	base 10 equipment or equivalent.	300 + 700 = 1000
Then I also know tens + tens = tens			3 tens + 5 tens = 8 tens 30 + 50 = 80
Extend to hundreds, tenths etc.	+		

Objective and strategies	Concrete	Pictorial	Abstract
Represent and use number bonds and related	Use bead strings, cubes, objects, base 10, place value counters	Representations of number lines, drawing of objects to show number	Emphasis should be on the language:
subtraction facts within 20.	and Numicon to show 2 more than 5.	bonds and related subtraction facts.	"One more than 5 is equal to 6"
I know that	Show if 2 more than 5 is 7, then 2		"2 more than 5 is 7"
(use the language in the abstract section)	less than 7 is 5.	2 2 2 5+2=	Eight is three more than five"

Objective and strategies	Concrete	Pictorial	Abstract
Use known number facts to find the inverse.	Children explore way of making numbers within 20. Use part-part-	Representation of part-part-whole diagram, tens frame, bar model	Make fact families using known facts. $\Box + 1 = 16$
Solve missing number problems.	whole diagrams, tens frames and Numicon.	and Numicon.	1 + 1 = 10 1 + 1 = 16 16 - 1 = 1
If I know that part + part =	201	+ = 20 20 - = + = 20 20 - =	16 - 1 = 🗆
whole Then I also know that whole – part = part Whole Part Part	Progress to Increasingly larger numbers.	Progress to increasingly larger numbers.	Progress to increasingly larger numbers.

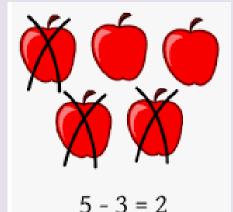
Objective and strategies	Concrete	Pictorial	Abstract
Regrouping to make 10. 7 + 4 = 11	Start with the bigger number and use the smaller number to make 10, Use tens frame, bead	Use pictures or a number line. Partition and regroup the smaller number to	If I am at 7, how many more do I need to make 10. How many more do I add on now?
Step 1: 7 + = 10 Step 2: 3 + = 4 Step 3: 10 + 1 =	strings and	3 + 9 = 9 + 5 = 14 1 4 +1 +4	7 + 4 = 11 7 + 3 + 1 = 11 10 + 1 = 11
		8 (9) (10) 11 12 13 (14) 15 16 17 18 19 20	

	Objective and strategies	Concrete	Pictorial	Abstract
/a	Adding three single digits. Step 1: look for a known fact doubles,	Add together three groups of objects. Put two of the groups together to make 10 and then add on the third	Representations of combining numbers to make 10. Draw pictures to show combining	Combine the two numbers to make 10 and add on the remaining number.
e	number bond etc) Step 2:	group. Put 4 and 6 together to make	groups to make 10.	$\begin{array}{r} 4 + 7 + 6 = 10 + 7 \\ 10 = 17 \end{array}$
(calculate known act.	10 and then add on 7.	\$*\$*\$*\$* \$*\$*\$*\$* \$*\$*\$*\$* \$*\$*\$*	
t r	Step 3: add on he remaining number to find he sum/total.	00000 000000 0000000000000000000000000	15 3 7 5	

Objective and strategies	Concrete	Pictorial	Abstract
Add a 2 digit number and ones. Stem	Use tens frame, base 10 and Numicon to make a whole ten, then	Use part-part- whole and number lines to model.	17 + 5 = 22 Explore related facts
Step 1: find the greatest number. Step 2: find how many more to the	add on the	17 + 5 = 22 $3 2$ $16 + 7$ $44 + 3$ 20 $16 20 23$	17 + 5 = 22 5 + 17 = 22 22 - 5 = 17 22 - 17 = 5 22 = 5 + 17 22 17 = 5 5
next whole ten. Step 3 : 17 + = next whole ten Step 4: 3 + = 5 Step 5: 20 + 2 =	Children to explore patterns in calci $_{17}$ + 5 = 22 ^{ICh} 27 + 5 = 32 37 + 5 = 42		Extend to missing number calculations 22 = +5

Objective and strategies	Concrete	Pictorial	Abstract
Add a 2 digit number and tens.	Using base 10 equipment, arrow cards and Numicon, explore that the ones digit does not change.	Use pictures or number lines to show adding multiples of 10.	Explore patterns in calculations including missing numbers and calculations that begin with the
is tens and ones. tens and ones + tens = tens and ones.	25 + 10 = 35	27 + 30 +10 +10 +10 	27 + 10 = 37 27 + 20 = 47 27 + = 57
equal to			57 = 27 +

Objective and strategies	Concrete	Pictorial	Abstract
Add two 2-digit numbers. Stem sentences	Model using base 10, place value counters and Numicon.	Use number lines to bridge 10. Use part-part-whole diagram if necessary.	25 + 47
<u>25</u> is <u>2</u> tens and <u>5</u> ones.	//* ///*	47 + 25 shown as	20+5 40+7
$\underline{47}$ is $\underline{4}$ tens and $\underline{7}$ ones. $\underline{2}$ tens + $\underline{4}$ tens = $\underline{6}$ tens		47 + 20 + 3 + 2	20 + 40 = 60
5 ones + 7 ones = 12 ones		+20 +5 Or +20 +3 +2 47 67 72 47 67 70 72	5 + 7 = 12 60 + 12 = 72
$\frac{12}{0} \text{ ones} = \frac{1}{1} \text{ ten and } \frac{2}{2}$ ones $\frac{6}{1} \text{ tens} + \frac{1}{1} \text{ ten} = \frac{7}{1} \text{ tens}$			
<u>7</u> tens + <u>2</u> ones = <u>72</u>			


Objective and strategies	Concrete	Pictorial	Abstract
Column addition – no regrouping. Add numbers with up to 3 digits.	Model using base 10 and Numicon, then place value counters.	Draw place value counters using a tens and ones frame.	Formal column addition without regrouping.
Step 1: add the	Add together starting with the smallest value digit.	tens ones	Adding the smallest value digit first.
teacher language - begin with the least significant digit	T O	T O	Add the ones first, then the tens, then the bundled H T O
Step 2: add the tens Step 3: add the hundreds	Image: Second system Image: Second system Image: Second system Ima	³⁴	2 2 3 + <u>1 1 4</u> 3 3 7

Objective and strategies	Concrete	Pictorial	Abstract
Column addition with regrouping. Step 1: $\underline{7}$ ones + $\underline{4}$ ones	Exchange 10 ones for 1 ten. Model using Numicon and place value counters, using a HTO frame.	Draw a representation of the grid to further support understanding, regrouping underneath the line.	Formal column addition with exchange. Begin with expanded method and progress to concise. T O 6 7 + 2 4
Step 2: <u>6 tens</u> + <u>2 tens = 8</u> tens	● ● 146 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●		1 1 (7 + 4) + 8 0 (60 + 20) 9 1
Step 3: add to find the sum/total		5 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Objective and strategies	Concrete	Pictorial	Abstract
Y4 Add numbers with up to four digits. Stem sentences below: Step 1: add the ones (exchange if necessary) Step 2: add the tens (exchange if necessary) Step 3: add the hundreds (exchange if necessary) Step 4: add the thousands (exchange if	Children to continue to use base 10 or place value counters to add, exchanging 10 ones for 1 ten, 10 tens for 1 hundred and 10 hundreds for 1 thousand	Draw representations using a place value grid.	Continue previous work to exchange and regroup hundreds as well as tens. Relate to measures and money. Th H T O 3517 + 396 3913

Objective and strategies	Concrete	Pictorial	Abstract
Y5 Add numbers with more than 4 digits. Add decimals with 2 decimal places including money. Stem sentences as for Y4	As year 4. Regular use of place value counters and model exchange and regrouping for addition.	As year 4. Draw representations using a place value grid. 2.37 + 81.79	Formal column addition with exchange and regrouping. H T O 5 6 4 + 1 9 7 7 6 2 N N $\frac{TTh Th H T O}{3 2 I 4 5}$ + 4 3 0 2 3 6 4 4 7 $\frac{T O \cdot \frac{1}{10} \frac{1}{100}}{3 6 4 4 7}$ F 7 5 5 F 3 1 0 1 4

Objective and strategies	Concrete	Pictorial	Abstract
Y6 Add several numbers of increasing complexity. Include adding money, measures and decimals with different numbers of decimal places.	As year 5	As year 5 Use number lines to introduce adding negative numbers.	Formal column addition. Use place holders for decimals with different numbers of decimal places. $\frac{T \circ \cdot \frac{1}{10} \frac{1}{100} \frac{1}{1000}}{1000}$ $\frac{2}{2} \cdot \frac{3}{3} \cdot \frac{3}{6} \cdot \frac{6}{1}$ $\frac{9}{9} \cdot \frac{3}{7} \cdot \frac{6}{7} \cdot \frac{1}{7} \cdot \frac{1}{9}$ $\frac{9}{3} \cdot \frac{5}{5} \cdot \frac{1}{1} \cdot \frac{1}{2}$

Subtraction

Key Vocabulary:

Subtract, subtraction, minus, less, take away, decrease, fewer, difference, exchange.

Teachers need to model the language of minuend - subtrahend = difference.

Objective and strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, two tone counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away.	Written number sentence. Solve using fingers or using known facts.
Step 1: The greater number is Step 2: The smaller number is Step 3: I start with I count back 	6-2=4	$ \begin{array}{c} $	8 – 2 = 6

Objective and strategies	Concrete	Pictorial	Abstract
Counting back Step 1: The greater number is Step 2: The smaller number is Step 3: I start with I count back	Move the beads along the bead string as you count backwards. 13 - 4 Move objects away from the group, counting backwards. 7 - 2	Count back in ones on a number line. Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at?

Objective and strategies	Concrete	Pictorial	Abstract
Find the difference	Compare amounts and objects to find the difference.	Count on to find the difference.	Hannah has 23
	7 'Seven is 3 more than four'		sandwiches, Helen has 15
	Use cubes to build towers or make bars to find the difference.	Draw bars to find the difference	sandwiches. How many more does Hannah have than
Start with the subtrahend.	5 Pencils	between 2 numbers.	Helen? Write a number
Count on to the minuend.	Use basic bar	Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	sentence to find the difference between the
The difference is	models with items to find the difference.	Skfer 22	number of sandwiches.

Objective and strategies	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20.	Link to addition. Use Part Part Whole to model the inverse. If 10 is the whole and 6 is one of the parts, what is the other part? 10-6 = 4	Use pictorial representations to show the whole and the parts.	Move to using numbers within the part whole model. 12 5 12 7 Make fact families using known facts. Progress to increasingly larger numbers. Emphasis should be on the language: "One less than 5 is equal to 4" "Eight is three

Objective and strategies	Concrete	Pictorial	Abstract
Use known number facts to find the inverse.	Children explore ways of making numbers within 20. Use part-part-	Representation of part-part-whole diagram, tens frame, bar model	Make fact families using known facts. \Box + 1 = 16
Solve missing number problems.	whole diagrams, tens frames and Numicon.	and Numicon.	1 + 1 = 16 1 + 1 = 16 16 - 1 = 1
If I know that part + part =	201	+ = 20 20 - = + = 20 20 - =	16 - 1 = 🗆
whole Then I also know that whole – part = part Whole Part Part	Progress to ncreasingly larger numbers.	Progress to increasingly larger numbers.	Progress to increasingly larger numbers.

Objective and strategies	Concrete	Pictorial	Abstract
Bridge 10	Use a tens frame and counters or double sided counters to bridge 10.	Counting back: 13-7 13-7 13-7 13-7 13-7 13-7 13-7 Subtract 3 first,	16 - 8 How many do we take off first to get
13 - 7 = 6 Step 1: 13 - _ = 10 Step 2: 3 + _ = 7 Step 3: 10 - 4 =	14 – 5 = 9 Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have subtracted 5.	then another 4. Use ten as the stopping point. Counting on: 12 - 5 = 7 +5 +2 5 10 12	to 10? How many left to take off?

Objective and strategies	Concrete	Pictorial	Abstract
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds. Stem sentence in the notes.	Use a bead string to model counting to next ten and then counting on the rest. 34—28	Use a number line to count on to next ten and then the rest. $\boxed{82-49=}_{49=697982}$ 10+10+10+3=33	93-76 = 17 Mentally: begin at 76. Add on 4 to 80, then 10 more to 90, then add 3 to reach 93. 4 + 10 + 3 = 17

Objective and strategies	Concrete	Pictorial	Abstract
Partitioning to subtract without re-grouping.	34-13 = 21 Use base 10 to show how to partition the number when subtracting without re	Children draw representations of base 10 and cross off.	43—21 = 22 Mentally subtract the tens and subtract the ones.
		subtracting without	43-21 = 22
STEM sentence in the notes.			

Objective and strategies	Concrete	Pictorial	Abstract
Column subtraction without regrouping	Use base 10 or place value counters to model.	Draw representations to support understanding.	Formal column subtraction without exchange.
numbers up to 3 digits. Step 1: subtract the ones *teacher language - begin with the least	47—32		2679 - 534 = $- 534 = $ $- 534 = $ $- 534 = $ $- 534 = $ $- 534 = $ $- 534 = $ $- 534 = $ $- 534 = $ $- 534 =$
significant digit* Step 2: subtract the tens	Th H T O Image: Second		
Step 3: subtract the			

Objective and strategies	Concrete	Pictorial	Abstract
Column subtraction with regrouping up to 3	Begin with base 10 or Numicon, moving on to place	Children may draw base ten or PV counters and	Formal column subtraction with exchange.
digits Stem sentences below: Step 1: subtract the ones (exchange if necessary)	value counters. Model the exchange of one ten for ten ones. Use the phrase 'exchange one ten	cross off.	H T O 4 45 4 - 1 2 8 3 2 6
Step 2: subtract the tens (exchange if necessary) Step 3: subtract the hundreds (exchange if necessary)	for ten ones'	45	Explicitly teach the following ^c ⁷ ⁹ ⁸ ¹ 0 ¹ 2 -2 4 7
Step 4: subtract the thousands (exchange if			555

n a a a a a a m d

Objective and strategies	Concrete	Pictorial	Abstract
Year 4 - Subtract up to 4 digits with regrouping.	Model process of exchange using base ten and then move to PV counters.	Children to draw place value counters and show their exchange.	Column subtraction with e: 7 19 8 10 12 -2 4 7
Introduce decimal subtraction through context of money and measure. Stem sentences as for previous slide	Think: Think: 1 hows 3 tens and 1 need more ones. 1 more average ones. 1 mill regroup 1 ten 1 more average ones. 1 mill regroup 1 ten 1 more average ones. 1 mill regroup 1 ten 1 more average ones. 1 mill regroup 1 ten 1 more average ones. 1 mill regroup 1 ten 1 more average ones. 1 more average ones. 1 more average ones. 1 more aver	Hundredt Tens Date 0	555 Use place value to line up decimal points and use a place holder to show value of emoty places $\frac{T}{2}, \frac{0}{7}, \frac{1}{2}, \frac{1}{100}, \frac{1}{10}, \frac{1}{10},$

Objective and strategies	Concrete	Pictorial	Abstract
Year 5 - Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals, correctly aligning the decimal point. Stem sentences as for Y4	As Year 4	As Year 4	Column subtraction. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Objective and strategies	Concrete	Pictorial	Abstract
Year 6 Subtract with increasingly large and more complex numbers and decimal values.	As Year 4/5	As Year 4/5	Column subtraction. Use place value to line up decimal points and use a place holder to show value of empty places.
Stem sentences as for Y4/Y5			T O $\frac{1}{10}$ $\frac{1}{100}$ $4 \not S$ $^{1}5$ 4 1 - 2 7 2 0 2 8 2 1 Th H T 0 $\frac{1}{10}$ $\frac{1}{100}$ $^{0}\not A$ $^{1}0$ $^{4}\not S$ $^{1}1$ $^{3}\not A$ $^{1}1$ 4 4 4 2 3 0 6 0 7 1 8

Solution Multiplication

 $3 \times 7 = 21$

Key Vocabulary:

Multiply, times, equal groups, double, commutative, array, row, column, multiple, factor, product, common factor, common multiple, prime, composite, squared (x²), cubed (x³), order of operations, brackets, inverse operation

Teachers need to model the language of factor x factor = product.

Objective and strategies	Concrete	Pictorial	Abstract
Doubling numbers to 10.	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling. $\int \int \int Double 4$ is 8 $ + = = = = = = = = = $	Draw pictures to show how to double numbers . Double 4 is 8	Rolling numbers, step counting and using fingers to double numbers to 10.Image: Counting and using fingers to double numbers to

Objective and strategies	Concrete	Pictorial	Abstract
Making equal groups.	Use manipulatives to create equal groups.	Draw and make representations clearly showing equal groups.	Language to describe the number sentence using "equal groups" and "total"
groups of 3. There are groups, in each group.	2 equal groups of 4	to show 2 equal groups of 3	"2 equal groups of 4 have a total of 8"

Objective and strategies	Concrete	Pictorial	Abstract
Repeated addition.	Use different objects to add equal groups.	Use pictorial representations including number lines to solve problems.	Write addition sentences to describe objects and pictures.
4 groups of 3 = ++ +	3 + 3 + 3	$3+3+3+3+3$ $= 15$ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet	2+2+2+2=10

Objective and strategies	Concrete	Pictorial	Abstract
Counting in equal groups to find the product.	Use manipulatives to create equal groups.	Draw and make representations clearly showing equal groups.	Rolling numbers, step counting and known facts.
There are groups of 3. There are groups, in		Draw 4 to show 2 x 3 = 6	Language to describe the number sentence using "groups" and
each group, so altogether. groups of		A	"total" 2 x 4 = 8
is equal to		A A	"2 groups of 4 have a total of 8"

Objective and strategies	Concrete	Pictorial	Abstract
Counting in multiples	Count in multiples supported by concrete objects in	Make representations to show counting in	Count in multiples of a number aloud.
	equal groups.	multiples.	Write sequences with multiples of numbers.
multiples of are equal to			2, 4, 6, 8, 10 3, 6, 9, 12, 15 5, 10, 15, 20, 25, 30
 2,, 6, 8, '		3 3 3 3 ?	Rolling numbers to count in multiples.
	Use concrete bar models to support.		4 × 3 =

Objective and strategies	Concrete	Pictorial	Abstract
Scaling	Use concrete resources such as objects, and increase using a scale factor. Make a tower 5 times as tall.	Draw bar models and pictures to show scale factor. Increase by a scale factor of 5	Apply the knowledge of the relationship between scaling and multiplication to solve increasingly C

Objective and strategies	Concrete	Pictorial	Abstract
Correspondence	Introduce the concept of correspondence problems where a number of objects are linked to a number of different objects using real life problems and concrete resources.	Draw the solution. Use a ruler and pencil to connect pictures so that they can count the connections. Begin recording the different combinations in a table or similar in a systematic order. Hat Scarf Hat Scarf 1 Hat A Scarf 1 Hat B Scarf 1 Hat B Scarf 1 Hat C Scarf 1 Hat C Scarf 1 Hat C Scarf 1 Hat C Scarf 1 Hat D Scarf 1 Hat D Scarf 2	Recognise the corresponding relationship as multiplication. There are 4 possible hats. For each hat there could be 2 possible scarves. The total number of ways to dress the snowman is $4 \times 2 = 8$ ways.

Objective and strategies	Concrete	Pictorial	Abstract
Understanding arrays – showing that multiplication is commutative	Use objects laid out in arrays to find the answers to 2 groups of 5, 3 groups of 2 etc.	Draw arrays in different rotations to find commutative multiplication	Use an array to write multiplication sentences and reinforce repeated addition.
factor x factor = product			X X X X X X X X X X X X 4 rows of 3
When you change the order of the			3 + 3 + 3 + 3 = 12 $4 \times 3 = 12$
factors, the <u>product</u> stays the same		$4 \times 3 = 3 \times 4$	5 + 5 + 5 = 15 3 + 3 + 3 + 3 + 3 = 15 5 x 3 = 15 3 x 5 = 15

Objective and strategies	Concrete	Pictorial	Abstract
Multiplying 3 single digits	Use objects, base 10, counters etc. Use commutative rules to multiply the product of two dice with the third	Use pictures or diagrams to solve. $2 \times 6 \times 7 =$	Use commutative rules and/or brackets to solve.
xx =	$1 \times 5 \times 3 = 15$	$2 \times 42 = 84$	2 x (8 x 5) = 2 x 40 = 80
factors with the remaining factor.			Understand that if one of the factors is 0, the product will be 0.

Objective and strategies	Concrete	Pictorial	Abstract
Using the inverse	Use objects to show inverse	Draw representations to show inverse.	Write a fact family showing the link between
If I know that factor x factor = product	5 groups of 4 cookies = 20 cookies altogether	factor factor product	multiplication and division.
Then I also know product ÷ factor =		$3 \times 6 = 18$ $7 \qquad \uparrow \qquad \uparrow$ number number in number of groups each group in all	3 x 4 =12 4 x 3 = 12
factor or dividend ÷ divisor =	20 cookies into groups of 4		$12 \div 3 = 4$ $12 \div 4 = 3$
quotient *	cookies = 5 groups	dividend divisor quotient $18 \div 3 = 6$	12 4 4 4
		number in all	

Objective and strategies	Concrete	Pictorial	Abstract
Doubling numbers beyond $16 = _$ tens and _	Model doubling using base 10 equipment and place value counters.	Draw pictures and representations to partition numbers before doubling Double 34	Partition a number and then double each part before recombining it back together.
ones. Double 10 = Double 6 =			16 10 12
	Double 26		
+=	Double 20 = 40 Double 6 = 12	Double 30 Double 4	
	40 + 12 = 52	60 + 8 = 68	

Objective and strategies	Concrete	Pictorial	Abstract
Partitioning to multiply is tens and ones. Multiply the ones. Multiply the tens. tens + ones =	2 digit x 1 digit Use base 10, place value counters etc to partition two digit numbers before	Draw part-whole representations to partition numbers before multiplying. 23×3	Record as a number sentence using brackets, partitioning mentally where possible. $36 \times 3 =$ $(30 \times 3) + (6 \times 3)$ = 90 + 18 = 108

Objective and strategies	Concrete	Pictorial	Abstract
Grid method	Show the links with arrays to first introduce the grid method.	Draw representations of place value	Start with multiplying by one digit numbers,
Step 1:	4 x 13	counters or base 10 using a grid to	showing the clear addition alongside
partition the numbers	x 10 3 4 ••••••••••••••••••••••••••••••••••••	organise the partitioned numbers.	the grid.
into a grid. Step 2:	4 rows of 10, 4 rows of 3	14 x 6	× 30 5 7 210 35
multiply each box	Maria an ta basa 40	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	210 + 35 = 245 Progress to
Step 3: Add the	Move on to base 10, place value counters etc:	000000000000000000000000000000000000000	multiplying 2 digit x 2 digit as appropriate.
product of the boxes		60 + 24 = 84	
	400 + 80 + 24 = 504		

Objective and strategies	Concrete	Pictorial	Abstract
Column multiplication. (Expanded) Step 1: multiply each digit by the ones Step 2: multiply each digit by the tens Step 3: add to find the	Children can continue to be supported by place value counters at this stage of multiplication. Ensure resources are placed in columns and multiplied beginning with the least significant digit.	Children can draw representations, multiplication rings etc for unknown tables, base 10 and/or place value counters in columns. $\overline{\begin{array}{c} T & O \\ 2 & 3 \\ \times & 4 \\ 1 & 2 \end{array}}$	Formal expanded column multiplication, lining up digits clearly in columns. Use brackets to record each calculation to TO 32 x 24 8 (4 x 2) 120 (4 x 30) 40 (20 x 2) 600 (20 x 30)
product		$+ \frac{8}{9} \frac{0}{2} (4 \times 20)$	768

Objective and strategies	Concrete	Pictorial	Abstract
Column multiplication (concise) Step 1: multiply each digit by the ones (exchange if necessary)	Base 10, place value counters should be used to	Draw representations, multiplication rings for unknown tables, base 10 and/or place value counters in columns.	Regrouping should be shown above the calculation with a + symbol. Addition regrouping is shown below the
Step 2: Insert place holder and multiply each digit by the tens (exchange if necessary)	131 x 5 = 500 + 150 + 5 Regroup 150 as 1 hundred and 5 tens.		x 18 10736 +1342
Step 3: add to find the product (exchange if necessary)	100's 10's 1's 100, 10, 10, 10, 10, 10, 10, 10, 10, 10,	+ <u>9</u> 2 1	24156

Objective and strategies	Concrete	Pictorial	Abstract
Square, cube, prime composite numb numb is A	Build representations of square, cube, prime and composite numbers using	Draw squares, cubes and rectangles to represent square, cube and prime numbers. 3 ² =9	Recognise and record prime numbers. Use notation to record square and cube numbers.
composite number is A square number is A cube number Is		12=1 22=4 0 prime composite ••• 3 4 ••• ••• 5 6 ••• 9 ••• 10 ••• 11 12	$1^{2} = 1 \times 1 = 1$ $2^{2} = 2 \times 2 = 4$ $3^{2} = 3 \times 3 = 9$ $4^{2} = 4 \times 4 = 16$ $5^{2} = 5 \times 5 = 25$ $6^{2} = 6 \times 6 = 36$ $7^{2} = 7 \times 7 = 49$ $8^{2} = 8 \times 8 = 64$ $9^{2} = 9 \times 9 = 81$ $10^{2} = 10 \times 10 = 100$

Key Vocabulary:

share, equal, total, divide, group, short division, long division, halve, partition, place value, remainder, multiply, divide, inverse, fact family, add, subtract, factor, multiple, exchange

Teachers need to model the language of dividend ÷ divisor = quotient (remainder)

Objective and strategies	Concrete	Pictorial	Abstract
Making equal groups	Sort a whole set people and objects into equal groups.	Represent a whole and work out how many equal groups.	Children may relate this to counting up in steps of 2, 5 or 10.
There are in each group. There are groups	There are 10 children altogether. There are 2 in each group. There are 5 groups.	There are 10 in total. There are 5 in each group. There are 2 groups.	

Objective and strategies	Concrete	Pictorial	Abstract
Halving	Share a whole set people and objects between two.	Use pictures as representations to halve even numbers up to 10,	Half of 6 is 3. 3 is half of 6. If I halve 6 I get 3.
Half of		progressing to even numbers up 333333333333333333333333333333333333	Children to make a link to 2 times tables, and to doubling as inverse facts.
is equal to	There are 10 sweets altogether. They are shared between 2 people.	There are 10	
	<i>There are 5 sweets each.</i>	sweets altogether. They are shared between 2 people. There are 5 sweets each.	

Objective and strategies	Concrete	Pictorial	Abstract
Sharing equally shared into equal parts. There are in each part.	Start with a whole and share into equal parts, one at a time.	Sketch or draw to represent sharing into equal parts. Represent the objects shared into equal parts using a bar model. 20 20 shared into 5 equal parts. There are 4 in	10 shared into 2 equal parts gives 5 in each part. Use a bar model to support understanding of the division. $18 \div 2 = 9$ Introduce language of dividend, divisor and quotient.

Objective and strategies	Concrete	Pictorial	Abstract
Grouping divided into groups	Understand how to make equal groups from a whole.	Understand the relationship between grouping and the division statements. 12 ÷ 6 = 2 12 ÷ 4 = 3 12 ÷ 2 = 6	Understand how to relate division by grouping. 12 divided into groups of 3. $12 \div 3 = 4$ There are 4
of There are groups.	10 divided into groups of 2. There are 5	I2 ÷ 3 = 4 Draw bar models to represent I2 I2 I2 I2 I2 I2 I2 I2 I2 I2	groups.

Objective and strategies	Concrete	Pictorial	Abstract
Link sharing and grouping	Use objects to practically explore the language of sharing and grouping.	Use pictures to represent grouping and sharing. What is the same? What is different?	Describe a picture using the language of sharing and grouping.
shared into equal parts is into groups of is	Share 12 cakes between 3 plates. Group 12 cakes into groups of 4.	$12 \div 3 = 4$ Grouping:	One picture, two ightharpoonup integrad integral is the picture integral is

Objective and strategies	Concrete	Pictorial	Abstract
Using known times-tables to solve divisions	Understand the relationship between multiplication facts	Link equal grouping with rolling numbers and known times-	Relate times-table knowledge directly to division
If I know that factor x factor = product	and division.	table facts to	$I \times I0 = I0$ $2 \times I0 = 20$ $3 \times I0 = 30$ $4 \times I0 = 40$ $5 \times I0 = 50$ $6 \times I0 = 60$ $7 \times I0 = 70$ $8 \times I0 = 80$ I used the I0 times-table to help me. $3 \times I0 = 30.$
Then I also know product ÷ factor = factor or	4 groups of 5 cars is 20 cars in total. 20 divided into	12 divided by 4 is 3. Use a bar model to support	I know that 3 groups of 10 makes 30, so I know that 30 divided into groups
dividend ÷ divisor = quotient	groups of 5 is 4 20 \div 5 = 4	understanding of the link between	of 10 is 3. 3 × 10 = 30 so 30 ÷ 10 = 3

Objective and strategies	Concrete	Pictorial	Abstract
Dividing whole numbers by 10, 100 and 1,000 To divide by 10, the digits move spaces to the	Use place value equipment to support unitising for division. 15 ones put into groups of 3 ones.	Represent related facts with place value equipment when dividing by unitising.	Understand how and why the digits change on a place value grid when dividing by 10, 100 or 1,000.
right. To divide by 100, the digits move spaces to the right.	There are 5 groups.	12 ones divided into groups of 4. There are 3 groups.	3,200 ÷ 100 = ? 200 ÷ 100 = 2 3,000 ÷ 100 = 30 3,200 ÷ 100 = 32
To divide by 1000, the digits move spaces to the right.	15 tens put into groups of 3 tens. There are 5 groups. 150 ÷ 30 = 5	12 hundreds divided into groups of 4 hundreds. There are 3 groups. 1200 ÷ 400 = 3	So, the digits will move two places smaller (to the right).

Objective and strategies	Concrete	Pictorial	Abstract
2-digit number divided by 1-digit number, no remainders (flexible partitioning) Partition the dividend into tens and ones. istens andones.	Children explore dividing 2-digit numbers by using place value equipment. $48 \div 2 = ?$	Children explore which partitions support particular divisions. $42 \div 2$	Children partition a number into 10s and 1s to divide where appropriate.
Divide the tens. ÷= Divide the ones. ÷+ tens + ones =	2 groups of tens and 4 groups of ones. $48 \div 2 = 24$	42 30 12 42÷3	$60 \div 2 = 30$ $8 \div 2 = 4$ 30 + 4 = 34 $68 \div 2 = 34$ Use flexible partitioning using known facts.

Objective and strategies	Concrete	Pictorial	Abstract
3-digit numbers by a single digit by partitioning into 100s, 10s and 1s See previous slide – extend to 3 digit numbers	Partition into 10s and 1s to divide where appropriate. $39 \div 3 = ?$ Due group of tens 3 groups of ones $39 = 30 \pm 9$ $30 \div 3 = 10$ $9 \div 3 = 3$ $39 \div 3 = 13$	Partition into 100s, 10s and 1s using jottings to divide where appropriate. $39 \div 3 = ?$ $39 \div 3 = ?$ 39 = 30 + 9 $30 \div 3 = 10$ $9 \div 3 = 3$ $39 \div 3 = 13$	Partition into 100s, 10s and 1s using a part-whole model to divide where appropriate. $142 \div 2 = ?$ $142 \div 2 = ?$ $142 \div 2 = ?$ $100 \div 2 = 6 \div 2 = 6$ $40 \div 2 = 20$ $6 \div 2 = 3$ 50 + 20 + 3 = 73

Objective and strategies	Concrete	Pictorial	Abstract
Understanding remainders	Use equipment to understand that a remainder occurs when a set of	Use images to explain remainders.	Understand that the remainder is what cannot be put into an equal
There are equal groups and left over (remaining) Dividend ÷ divisor = quotient and remainder	objects cannot be divided equally any further.	22 into groups of 5 is 4 groups and 2 remainders $22 \div 5 = 4 r^2$ Use a bar model to support	group. $22 \div 5 = ?$ 5 10 15 20 25 (25 is more than 22) There are 4 equal groups of 5. Count on from 20 to 22. There are 2 remainders $22 \div 5 = 4 r^{2}$ $29 \div 8 = 3 REMAINDER 5$ $\uparrow \uparrow \uparrow \uparrow \uparrow$

Objective and strategies	Concrete	Pictorial	Abstract
2-digit number divided by 1-digit number, with remainders	Use place value equipment to understand the concept of remainder.	Use drawings to understand the concept of remainder in division.	Partition to divide, understanding the remainder in context.
Step 1: partition the dividend into tens and ones. = tens and ones Step 2: divide the tens \div = Step 3: divide the	Make 29 from place value equipment. Divide into groups	$20 \div 6 = ?$	67 children try to make 5 equal lines. 67 = 60 + 7 $60 \div 5 = 12$ $7 \div 5 = 1$ remainder 2 $67 \div 5 = 13$ r2
Ones ÷ Write the remainder.	and 4 groups of ones and 1 remainder. $29 \div 2 = 14 r1$		There are 13 children in each line and 2 children

Objective and strategies	Concrete	Pictorial	Abstract
Dividing up to four digits by a single digit using short division (no exchange)	Use place value equipment on a place value grid alongside short division.	Use jottings to show understanding of place value within short division.	Progress to up to 4 digits divided by a single digit as appropriate using short division.
Set out the short division. Divide the tens. $- \div -$ Write the quotient in the tens column Divide the ones. $- \div -$ Write the quotient in the ones column*	$48 \div 4 = ?$ $4 4 = ?$ $4 4 = ?$ $4 4 = ?$ $4 4 = ?$ $4 4 = 8$ $7 0$ $4 = 0$ $4 = 12$ $7 0$ $7 $	$96 \div 3 =$ $3 \boxed{96} \div 3 =$ $7 \xrightarrow{0}$ $96 \div 3 =$ $7 \xrightarrow{0}$ $96 \xrightarrow{0} 0 \xrightarrow{0}$	3 2 1 2 3 9 6 3 6 Link layout of formal method with language of number sentence. Quotient Divisor Dividend

Objective and strategies	Concrete	Pictorial	Abstract
 Dividing up to four digits by a single digit using short division (with exchange) Set out the short division. Divide the tens ÷ (exchange where necessary) Write the quotient in the tens column Divide the ones ÷ (exchange where necessary) Write the quotient in the tens column Divide the ones ÷ (exchange where necessary) Write the quotient in the tens column 	Use base 10/place value equipment on a place value grid alongside short division. Ensure exchange is explored practically and verbal explanations to show understanding. $4\boxed{92}$ $\boxed{1000}$ $\boxed{10000}$ $\boxed{100000}$ $\boxed{1000000}$ $\boxed{10000000}$ $\boxed{1000000000}$ $1000000000000000000000000000000000000$	Use jotting alongside short division. Work with divisions that require exchange. H H H H H H H H H H H H H H H H H H	Use short division for up to 4-digit numbers divided by a single digit. $3,892 \div 7 = 556$ 0 5 5 6 $7 3^3 8^3 9^4 2$ Use multiplication to check. $556 \times 7 = ?$ $6 \times 7 = 42$ $50 \times 7 = 350$ $500 \times 7 = 3500$ 3,500 + 350 + 42 = 3,892 Divisions with a remainder explored in problem-solving contexts.

Objective and strategies	Concrete	Pictorial	Abstract
Dividing by a 2- digit number using long division with multiples Step 1: subtract known multiples of the divisor. Step 2: subtract the remaining multiples until you have reduced all of the dividend. Step 3: add the total of the multiples. Write the quotient and any remainders	Use equipment to build numbers from groups.	Use an area model alongside written division to model the process. $\int_{13}^{7} \frac{377}{10} \frac{7}{13} \frac{7}{10} \frac{7}{13} $	Use long division. Write the required multiples to support the division process. $10 ext{ B } 26 ext{ 39 } 52 ext{ 65 } 78 ext{ 91 } 104 ext{ 17 } 100 ext{ 17 } 100 ext{ 13 } 37 ext{ 7 } 7 ext{ - 1 } 3 ext{ 0 } 100 ext{ 13 } 37 ext{ 7 } 7 ext{ - 1 } 3 ext{ 0 } 100 ext{ 17 } 10 ext{ 1 } 7 ext{ 0 } 24 ext{ 7 } 10 ext{ 0 } 10 ext{ 17 } 7 ext{ 0 } 24 ext{ 7 } 10 ext{ 0 } 10 ext{ 17 } 7 ext{ 13 } 88 ext{ 13 } 9x ext{ 13 } 9x ext{ 13 } 9x ext{ 13 } 100 ext{ 17 } 100 ext{ 17 } 7 ext{ 13 } 9x ext{ 13 } 100 ext{ 13 } 7 ext{ 7 } 100 ext{ 13 } 7 ext{ 7 } 100 ext{ 13 } 7 ext{ 1$

Objective and strategies	Concrete	Pictorial	Abstract
Dividing decimals Set out the short division.	Use place value equipment to explore division of decimals.	Use a bar model to represent divisions.	Use short division to divide decimals with up to 2 decimal
Divide the ones. ÷ (exchange where necessary) Write the remainder in the tenths column	8 tenths divided into 4 groups.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Write the decimal point. Divide the tenths ÷ (exchange where	There are 2 tenths in each group. $0.8 \div 4 = 0.2$		Extend to decimal 035.5
necessary) Write the remainder in the hundredths column*			4) $1^{1}4^{2}2 \cdot 20^{2}$ 142 ÷ 4 = 35 \cdot 5 2/4 = 1/2 = 0.5

Objective and strategies	Concrete	Pictorial	Abstract
Long division (formal method) The stem is the script in the notes section (in bold) . This must be used consistently to ensure understandin g	Use base 10 equipment and a bus stop template to divide practically. Encourage children to record their workings on the template as they group and subtract.	Use pictorial representations of long division using base 10 or equivalent. Children can circle groups and record alongside concrete resources if	Use long division. Divide by a 2 digit number including a decimal dividend. $65 \div 5$ $divisor \longrightarrow 5) \xrightarrow{65} \longrightarrow dividend$ $\xrightarrow{-5\downarrow} \xrightarrow{13} \longrightarrow quotient} dividend$ $\xrightarrow{-5\downarrow} \xrightarrow{-15} \longrightarrow remainder$ $3 \xrightarrow{9 4} \xrightarrow{4} \longrightarrow 3$ groups of 3 (hundreds) $\xrightarrow{-3 4} \longrightarrow 3$ groups of 1 (ten) $1 \xrightarrow{8} \longrightarrow 3$ groups of 6 (ones) 0 Extend to decimals. $5 \xrightarrow{25.2} \xrightarrow{10} \xrightarrow{-10} \xrightarrow{0} \xrightarrow{10} \xrightarrow{0} \xrightarrow{10} \xrightarrow{0} \xrightarrow{10} \xrightarrow{0} \xrightarrow{10} \xrightarrow{0} \xrightarrow{10} \xrightarrow{0} \xrightarrow{0} \xrightarrow{10} \xrightarrow{0} \xrightarrow{0} \xrightarrow{10} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} $

Objective and strategies	Concrete	Pictorial	Abstract
Understanding factors and prime numbers A composite number is A factor is	Use equipment to explore the factors of a given number. 24 ÷ 3 = 8 24 ÷ 8 = 3 8 and 3 are factors of 24 because they divide 24 exactly. 24 ÷ 5 = 4 remainder 4. 5 is not a factor of 24 because there is a remainder.	Understand that prime numbers are numbers with exactly two factors. $13 \div 1 = 13$ $13 \div 2 = 6 r 1$ $13 \div 3 = 4 r 1$ $13 \div 4 = 3 r 1$ $13 \div 5 = 2 r 3$ $13 \div 6 = 2 r 1$ 1 and 13 are the only factors of 13. 13 is a prime number.	Understand how to recognise prime and composite numbers. <i>I know that 31 is a</i> <i>prime number</i> <i>because it can be</i> <i>divided by only 1</i> <i>and itself without</i> <i>leaving a remainder.</i> <i>I know that 33 is a</i> <i>composite number</i> <i>(not a prime</i> <i>number) as it can be</i> <i>divided by 1, 3, 11</i> <i>and 33.</i> <i>I know that 1 is not a</i> <i>prime number, as it</i> <i>has only 1 factor</i>