

3 x 7 = 21 Multiplication

Key Vocabulary:

Multiply, times, equal groups, double, commutative, array, row, column, multiple, factor, product, common factor, common multiple, prime, composite, squared (x^2) , cubed (x^3) , order of operations, brackets, inverse operation

Teachers need to model the language of factor x factor = product.

Doubling numbers within 10

Double 4

is 8

Draw pictures to show how to double numbers .

Rolling numbers, step counting and using fingers to double numbers to 10.

Making equal groups

There are ____ groups of 3.

There are ___ groups, ___ in each group.

Use manipulatives to create equal groups.

Draw and make representations clearly showing equal groups.

Ś

8 8

 \bigcirc

 $\langle \! \langle \! \langle \! \langle \! \rangle \! \rangle$

Which activities have groups of 3 and groups of 4?

Guided practice:

Draw circles to group.

3 fives

5 fours

Repeated addition

Use different objects to

add equal groups.

3+3+3+3+3

Write addition sentences to describe objects and pictures.

Counting in equal groups to find the product

There are _____ groups of 3.

There are ____ groups, ___ in each group, so ____altogether.

__ groups of __ is equal to __

Addition: 4 + 4 + 4 + 4 + 4 = 20 (people)

Multiplication: $5 \times 4 = 20$ (people)

There are (5) groups, (4) people in each group, so (20) people altogether.

Addition: (4) + (4) + (4) + (4) + (4) + (4) + (4) = (24) sausages

Multiplication: $(6) \times (4) = (24)$ sausages

Guided practice:

Addition: (3) + (3) + (3) + (3) + (3) = (15) blocks

Multiplication: $(5) \times (3) = (15)$ blocks

Addition: 1 + 2 + 4 = 7

Multiplication:

Can you write a multiplication sentence?

Counting in multiples

multiples of are equal to

2, __, 6, 8, __,

Count in multiples supported by concrete objects in equal groups.

Make representations to show counting in multiples.

Count in multiples of a number aloud. Write sequences with multiples of numbers.

2, 4, 6, 8, 10 3, 6, 9, 12, 15 5, 10, 15, 20, 25, 30

3 3 3 3

Multiplying by 10, 100, 1000

Emily has 1 pencil; Jamie has 10 times as many. How many pencils does Jamie have?

Emily has 2 pencils; Jamie has 10 times as many. How many pencils does Jamie have?

Emily has 3 pencils; Jamie has 10 times as many. How many pencils does Jamie have?

10
20
30
40

www.ncetm.org.uk/masterypd

© Crown Copyright 2018

	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
	100	200	300	400	500	600	700	800	900
a v 10 - a 0	10	20	30	40	50	60	70	80	90
	1	2	3	4	5	6	7	8	9

	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
	100	200	300	400	500	600	700	800	900
v 10 /	10	20	30	40	50	60	70	80	90
× 10 (1	2	3	4	5	6	7	8	9

© Crown Copyright 2018

Scaling

times as tall.

Draw bar models and pictures to show scale factor. Increase by a scale factor of 5.

a) Andy has put 3 blocks end to end to make a new shape. What is the length of Andy's shape?

	Total lengt	h	
8	8	8	\Box

Apply the knowledge of the relationship between scaling and multiplication to solve increasingly complex problems.

Correspondence

Introduce the concept of correspondence problems where a number of objects are linked to a number of different objects using real life problems and concrete resources.

a) How many different ways can Ambika dress the snowman?

Record the ways in a list.

1 snowman, 4 hats, 2 scarves. How many combinations?

Correspondence

Draw the solution. Use a ruler and pencil to connect pictures so that they can count the connections.

Begin recording the different combinations in a table or similar in a systematic order.

Hat	Scarf	
Hat A	Scarf I	
Hat A	Scarf 2	
Hat B	Scarf I	
Hat B	Scarf 2	
Hat C	Scarf I	
Hat C	Scarf 2	
Hat D	Scarf I	
Hat D	Scarf 2	

Recognise the corresponding relationship as multiplication.

There are 4 possible hats. For each hat there could be 2 possible scarves. The total number of ways to dress the snowman is $4 \times 2 = 8$ ways.

Understanding arrays - showing that multiplication is commutative

factor x factor = product

When you change the order of the factors, the **product** stays the same

In focus:

Children packed 12 drink bottles into a crate.

Using the counters on your table, can you represent this?

 $3 \times 4 = 12$ What is the same and what is different? $3 \times 4 = 4 \times 3$

4 x 3 = 12

3 4s are (12)

Multiplication: $3 \times 4 = (12)$

4 3s are (12)

Multiplication: $4 \times 3 = (12)$

John says I don't know my 7 times table so how could I work out 7 x 2?

Draw circles to group:

$3 \times 5 = 5 + 5 + 5 = 15$

$5 \times 3 = 3 + 3 + 3 + 3 + 3 = 15$

$$5 \times 3 = 3 \times 5 = 3 + 3 + 3 + 3 + 3 = 5 + 5 + 5 = 15$$

Multiplying 3 single digits

b) How many stickers are there, in total, on the teacher's desk?

There are 5 rows of 2 stickers.

.....

(#

2

 $5 \times 2 \times 3 = 30$

 $10 \times 3 = 30$

-

-

ee 🕾

Using the inverse

If I know that factor x factor = product

Then I also know product ÷ factor = factor or dividend ÷ divisor = quotient *

factor factor product
3 X 6 = 18
7 T T
number number in number
of groups each group in all

If I know that factor x factor = product

Then I also know product ÷ factor = factor or dividend ÷ divisor = quotient *

Using the inverse

Doubling numbers beyond 10

16 = tens and ones. Double 10 = Double 6 =

Model doubling using base 10 equipment and place value counters.

Double 26 Double 20 = 40 Double 6 = 12 40 + 12 = 52

Double 26 Double 20 = 40 Double 6 = 12 40 + 12 = 52

Partitioning to multiply

____ is ___ tens and _ ones.

Multiply the ones.

Multiply the tens.

2 digit x 1 digit Use base 10, place value counters etc to partition two digit numbers before multiplying.

60 + 9 = 69

Record as a number sentence using brackets, partitioning mentally where possible. $36 \times 3 =$ $(30 \times 3) + (6 \times 3) =$

90 + 18 = 108

Show the links with arrays to first introduce the grid method.

	4 x 13					
х	10	3				
4						
4	rows of 10, 4 row	/s of 3				

Move on to base 10, place value counters etc: 126 x 4

400 + 80 + 24 = 504

Grid method

Start with multiplying by one digit numbers, showing the clear addition alongside the grid.

×	30	5			
7	210	35			
210 + 35 = 245					

Step 1: partition the numbers into a grid.

Step 2: multiply each box

Step 3: Add the product of the boxes

Column multiplication (expanded)

Step 1: multiply each digit by the ones

Step 2: multiply each digit by the tens

Step 3: add to find the product

 $131 \times 5 = 5 + 150 + 500$

32 x 24 8 (4×2) 120 (4×30) 40 (20×2) (20×30) 600 768

Column multiplication (concise)

Step 1: multiply each digit by the ones (exchange if necessary)

Step 2: Insert place holder and multiply each digit by the tens (regroup if necessary)

Step 3: add to find the product (regroup if necessary)

131 x 5 = 500 + 150 + 5

egroup 150 as 1 hundred and 5 tens.

+1 H T O 1 3 1 <u>5</u> 6 5 5

a) Without calculating, how can you tell which total is more likely to be correct, £128,820 or £12,905?

Using rounding to estimate shows that £12,905 is more likely to be correct. However, we know it is not correct because the answer must end in 0. I know that multiplying the ones digit 5 by 4 means the ones digit of the answer must be 0, so I do not think £12,905 is correct.

1 . . .

b) How much will the trip actually cost for four people?

	Me	ethod	3		
	3,000	200	20	5	
4	12,000	800	80	20	

Square, cube, prime and composite numbers

A prime number is____

A composite number is ____

A square number is ____

A cube number is____

1	8	27	64	125

 $4^2 = 4 \times 4 = 16$

		3²=9
12 1	2²=4	
1-=1		$\bullet \bullet \bullet$
		$\bullet \bullet \bullet$

prir	ne	co	mposite
•••	2		2222
•••	3		0000
		4	
•••••	5		2000
		6	
•••••	7		2000
		8	
		9	
		10	
•••••	11		2023
		12	