

Key Vocabulary:

Multiply, times, equal groups, double, commutative, array, row, column, multiple, factor, product, common factor, common multiple, prime, composite, squared (x^{2}), cubed (x^{3}), order of operations, brackets, inverse operation

Teachers need to model the language of factor x factor $=$ product.

Doubling numbers within 10

Draw pictures to show how to double numbers .

Double 4 is 8

Rolling numbers, step counting and using fingers to double numbers to 10 .

Making equal groups

Use manipulatives to create equal groups.

Draw and make representations clearly showing equal groups.

Which activities

 have groups of 3 and groups of 4?Guided practice:

Repeated addition

Use different objects to add equal groups.

Use pictorial representations including number lines to solve problems.

Write addition sentences to describe objects and pictures.

Counting in equal groups to find the

Addition: $4+4+4+4+4=20$ (people)

Multiplication: $5 \times 4=20$ (people)

There are (5) groups, (4) people in each group, so (20) people altogether.

Addition: $(4)+(4)+(4)+(4)+(4)+(4)=(24)$ sausages
Multiplication: (6) $\times(4)=(24)$ sausages

Guided practice:

Addition: $(3)+(3)+(3)+(3)+(3)=(15)$ blocks
Multiplication: (5) $\times(3)=(15$) blocks

Addition: $1+2+4=7$
Multiplication:

Can you write a multiplication sentence?

Counting in multiples

Count in multiples supported by concrete objects in equal groups.

Make
representations
to show counting in multiples.

Count in multiples of a number aloud.
Write sequences with multiples of numbers.

2, 4, 6, 8, 10
3, 6, 9, 12, 15
$5,10,15,20,25,30$

Multiplying by 10, 100, 1000

Emily has 1 pencil; Jamie has 10 times as many. How many pencils does Jamie have?

Emily has 2 pencils; Jamie has 10 times as many. How many pencils does Jamie have?

Emily has 3 pencils; Jamie has 10 times as many.
 How many pencils does Jamie have?

1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
$10=102$	3	4	5	6	7	8	9	

$\times 10\left(\begin{array}{|r|r|r|r|r|r|r|r|r|}\hline 1,000 & 2,000 & 3,000 & 4,000 & 5,000 & 6,000 & 7,000 & 8,000 & 9,000 \\ \hline 100 & 200 & 300 & 400 & 500 & 600 & 700 & 800 & 900 \\ \hline 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline\end{array}\right.$

| $1,000 \mathrm{~s}$ | 100 s | 10 s | 1 s |
| :---: | :---: | :---: | :---: | :---: |
| | | | |

$1,000 \mathrm{~s}$	100 s	10 s	1 s
			1
		1	
	1		
1			

$$
6 \times 10=60
$$

Scaling

Make a tower 5 times as tall.

Draw bar models and pictures to show scale factor.
Increase by a scale factor of 5.

(1) a) Andy has put 3 blocks end to end to make a new shape. What is the length of Andy's shape?

Apply the knowledge of the relationship between scaling and multiplication to solve increasingly complex problems.

Correspondence

Introduce the concept of correspondence problems where a number of objects are linked to a number of different objects using real life problems and concrete resources.

Correspondence

Draw the solution. Use a ruler and pencil to connect pictures so that they can count the connections.

Begin recording the different combinations in a table or similar in a systematic order.

Recognise the corresponding relationship as multiplication.

There are 4 possible hats.
For each hat there could be 2 possible scarves. The total number of ways to dress the snowman is $4 \times 2=8$ ways.

Understanding arrays - showing that multiplication is commutative

In focus:

Children packed 12 drink bottles into a crate.
Using the counters on your table, can you represent this?
(
$3 \times 4=12$
$3 \times 4=4 \times 3$

> What is the same and what is
> different?
$4 \times 3=12$

When you exchange the order of the factors the product remains the same.

This is called commutativity

34 s are (12)
Multiplication: $3 \times 4=(12)$

Multiplication: $4 \times 3=(12)$

John says I don't know my 7 times table so how

 could I work out 7×2 ?
Draw circles to group:

$5 \times 3=3+3+3+3+3=15$
$3 \times 5=5+5+5=15$

$$
5 \times 3=3 \times 5=3+3+3+3+3=5+5+5=15
$$

Multiplying 3 single digits

There are 5 rows of 2 stickers.

b) How many stickers are there, in total, on the teacher's desk?

Using the inverse

Using the inverse

How many flags will they make?
a) In total. Emmo and Miss Hall need to use 60 stars.

0

Doubling numbers beyond 10

Model doubling using base 10 equipment and place value counters.

Double 26
Double $20=40$
Double $6=12$
$40+12=52$

Double 26
Double 20 $=40$
Double $6=12$
$40+12=52$

Partitioning to multiply

2 digit x 1 digit Use base 10, place value counters etc to partition two digit numbers before multiplying.

$60+9=69$

Record as a number sentence using brackets, partitioning mentally where
possible.
$36 \times 3=$
$(30 \times 3)+(6 \times 3)=$

$$
90+18=108
$$

Show the links with arrays to first introduce the grid method.

Move on to base 10, place value counters

$400+80+24=504$

Grid method

Start with multiplying by one digit numbers, showing the clear addition alongside the grid.

x	30	5	
7	210	35	
$210+35=245$			

Step 1:
partition the numbers
into a grid.
Step 2:
multiply each box

Step 3:
Add the
product of
the boxes

Column multiplication (expanded)

$131 \times 5=5+150+500$

Column multiplication (concise)

©
a) Without calculating, how can you tell which total is more likely to be correct, $£ 128,820$ or $£ 12,905$?

Using rounding to estimate shows that $£ 12,905$ is more likely to be correct. However, we know it is not correct because the answer must end in 0 .

I know that multiplying the ones digit 5 by 4 means the ones digit of the answer must be 0 , so I do not think $£ 12.905$ is correct.

b) How much will the trip actually cost for four people?

Method 3

$\begin{array}{llll}3,000 & 200 & 20 & 5\end{array}$

12,000	800	80	20

$12,000+800+80+20=12,900$

Method 2


```
4\times3,0004\times2004\times204\times5
    12,000+800 + 80 + 20=12,900
```


Square, cube, prime and composite

 numbers

$$
\begin{array}{cc}
2^{2}=4 \\
1^{2}=1
\end{array}
$$

