

Division

Key Vocabulary:

share, equal, total, divide, group, short division, long division, halve, partition, place value, remainder, multiply, divide, inverse, fact family, add, subtract, factor, multiple, exchange

Teachers need to model the language of dividend ÷ divisor = quotient (remainder)

Making equal groups

Sort a whole set people and objects into equal

groups.

There are 10 children altogether. There are 2 in each group. There are 5 groups. Represent a whole and work out how many equal groups.

There are 10 in total. There are 5 in each group. There are 2 groups. Children may relate this to counting up in steps of 2, 5 or 10.

There are __in each group.

There are ___groups

Halving

Share a whole set people and objects between two.

There are 10 sweets altogether. They are shared between 2 people.

There are 5 sweets each.

Use pictures as representations to halve even numbers up to 10, progressing to even numbers up to 20.

Half of 6 is 3. 3 is half of 6. If I halve 6 I get 3.

Children to make a link to 2 times tables, and to doubling as inverse facts.

Start with a whole and share into equal parts, one at a time.

8 shared equally between 4 plates. There are 2 on each plate. Represent the objects shared into equal parts using a bar model.

Sharing equally

20 shared into 5 equal parts. There are 4 in each part. Use a bar model to support understanding of the division. $18 \div 2 = 9$

Introduce language of dividend, divisor and quotient. __ divided into groups of __. There are __ groups.

Grouping

Understand how to make equal groups from a whole.

8 divided into groups of 2. There are 4 groups. Understand the relationship between grouping and the division statements.

12 divided into groups of 3. $12 \div 3 = 4$

There are 4 groups.

Link sharing and grouping

Use pictures to represent grouping and sharing. What is the same? What is different?

 $12 \div 3 = 4$

___ shared into ___ equal parts is ___.

___ into groups of ___ is ___.

Grouping:

Sharing:

One picture, two stories:

12 cakes shared between 3 plates. There are 4 on each plate. $12 \div 3 = 4$

12 cakes into groups of 4.There are 3 groups. $12 \div 4 = 3$

Using known times-tables to solve divisions

If I know that factor x factor = product

Then I also know product ÷ factor = factor or dividend ÷ divisor = quotient Understand the relationship between multiplication facts and division.

4 groups of 5 cars is 20 cars in total. 20 divided into groups of 5 is 4

 $20 \div 5 = 4$

Dividing whole numbers by 10, 100 and 1,000

To divide by 10, the digits move _____ spaces to the right.

To divide by 100, the digits move ____ spaces to the right.

To divide by 1000, the digits move _____ spaces to the right.

Use place value equipment to support unitising for division.

15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3 = 5$

15 tens put into groups of 3 tens. There are 5 groups.

150 ÷ 30 = 5

2-digit number divided by 1-digit number, no remainders (flexible partitioning)

48 ÷ 2 = ?

Children explore dividing 2-digit numbers

- Partition the dividend into tens and ones.
- __ is ___ tens and ___ ones.

Divide the tens.

____÷ ___ = ____

Divide the ones.

___ ÷ ___ + ___

__ tens + __ ones = _

 $40 \div 2 = 20$ $8 \div 2 = 4$ 20 + 4 = 24 $48 \div 2 = 24$

Dividing up to 3-digit numbers by a single digit by partitioning into 100s, 10s and 1s

Partition into 100s, 10s and 1s using a part-whole model to divide where appropriate.

142 ÷ 2 = ?

 $100 \div 2 = 50$ $40 \div 2 = 20$ $6 \div 2 = 3$

50 + 20 + 3 = 73142 ÷ 2 = 73

Understanding remainders

There are ____ equal groups and ___ left over (remaining).

Dividend ÷ divisor = quotient and remainder Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further.

There are 13 sticks in total. There are 3 groups of 4, with 1 remainder.

37					
10	10	10	7		

Understand that the remainder is what cannot be put into an equal group.

22 ÷ 5 = ?

5 10 15 20 <u>25 (25</u> is more than 22)

There are 4 equal groups of 5. Count on from 20 to 22. There are 2 remainders

 $22 \div 5 = 4 r^2$

2-digit number divided by 1-digit number, with remainders

Step 2: divide the tens

___÷___ = ___

Step 3: divide the ones ___ ÷ ___ Write the remainder. Partition to divide, understanding the remainder in context.

67 children try to make 5 equal lines.

67 = 60 + 7

 $60 \div 5 = 12$ 7 ÷ 5 = 1 remainder 2 $67 \div 5 = 13$ r2

There are 13 children in each line and 2 children left out.

Dividing up to four digits by a single digit using short division (no exchange)

Set out the short division.

Divide the tens. ___÷___ Write the quotient in the tens column

Divide the ones.

___ ÷ ___ Write the quotient in the ones column* Use place value equipment on a place value grid alongside short division. $48 \div 4 = ?$

There is 1 group of 4 tens. There are 2 groups of 4 ones. $48 \div 4 = 12$ Progress to up to 4 digits divided by a single digit as appropriate using short division.

3 2 I 2 3 9 6 3 6

Link layout of formal method with language of number sentence.

Dividing up to four digits by a single digit using short division (with exchange)

Set out the short division.

Divide the tens. ___ ÷ ___ (exchange where necessary)

Write the quotient in the tens column

Divide the ones. ___ ÷ ___ (exchange where necessary)

Write the quotient in the ones column*

Dividing by a 2-digit number using long division with multiples

Step 1: subtract known multiples of the divisor.

Step 2: subtract the remaining multiples until you have reduced all of the dividend.

Step 3: add the total of the multiples.

Write the quotient and any remainders

Use long division. Write the required multiples to support the division process.

13	3	7	7	
-	1	3	0	10
	2	4	7	
-	1	3	0	10
	Т	Ι	7	
-	Т	T	7	q
			0	29

377 ÷ 13 = 29

Dividing decimals

Set out the short division.

Divide the ones. ___ ÷ ___ (exchange where necessary) Write the remainder in the tenths column

Write the decimal point.

Divide the tenths. ___ ÷

(exchange where necessary) Write the remainder in the hundredths column* Use place value equipment to explore division of decimals.

8 tenths divided into 4 groups. There are 2 tenths in each group.

 $0.8 \div 4 = 0.2$

0.8					
?	?	?	?		
4 × 2 = 8		8 ÷ 4 = 2			
So, $4 \times 0.2 = 0.8$		0·8 ÷	- 4 = 0.2		

Use short division to divide decimals with up to 2 decimal places.

Long division (formal method)

Understanding factors and prime numbers

Use equipment to explore the factors of a given number.

 $24 \div 3 = 8$ $24 \div 8 = 3$ 8 and 3 are factors of 24because they divide 24 exactly.

24 ÷ 5 = 4 remainder 4.

5 is not a factor of 24 because there is a remainder.

I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder.

I know that 33 is a composite number (not a prime number) as it can be divided by 1, 3, 11 and 33.

I know that 1 is not a prime number, as it has only 1 factor.