

Division

Key Vocabulary:

share, equal, total, divide, group, short division, long division, halve, partition, place value, remainder, multiply, divide, inverse, fact family, add, subtract, factor, multiple, exchange

Teachers need to model the language of dividend :divisor = quotient (remainder)

Making equal groups

Sort a whole set people and objects into equal groups.

There are 10 children altogether.
There are 2 in each group.
There are 5 groups.

Represent a whole and work out how many equal groups.

000000000

There are 10 in total.
There are 5 in each group.
There are 2 groups.

Children may relate this to counting up in steps of 2,5
or 10.

There are in each group.

There are groups

Halving

Share a whole set people and objects between two.

There are 10 sweets altogether.
They are shared between 2 people.
There are 5 sweets each.

Use pictures as

representations to halve even numbers up to 10, progressing to even numbers up to 20.

Start with a whole and share into equal parts, one at a time.

8 shared equally between 4 plates.
There are 2 on each plate.
 \title{
Sharing equally
 \title{
Sharing equally
 Sharing equally
}

Use a bar model to support understanding of the division.

$$
18 \div 2=9
$$

Introduce language of
dividend, divisor and
Introduce language of
dividend, divisor and quotient.

\qquad

\qquad

- d正
.

Represent the objects shared into equal parts using a bar model.

20 shared into 5 equal parts.
There are 4 in each part.

\qquad

.

Grouping

Understand how to make equal groups from a whole.

8 divided into groups of 2. There are 4 groups.

Understand the relationship between grouping and the division statements.

$12+6=2$
 $\bullet 0 \bullet 0000$ OQ日

$12 \div 4=3$
$\bullet \bullet \bullet \bullet \bullet \bullet O \bullet \bullet \bullet$

12 divided into groups of 3 .
$12 \div 3=4$

There are 4 groups.

Link sharing and grouping

Use pictures to represent grouping and sharing.
What is the same?
What is different?
$12 \div 3=4$
Grouping:

Sharing:

One picture, two stories:

12 cakes shared between 3 plates. There are 4 on each plate.
$12 \div 3=4$
12 cakes into groups of
4. There are 3 groups.
$12 \div 4=3$

Using known times-tables to solve
 Using kn divisions
 $$
\|
$$

Dividing whole numbers by 10, 100 and 1,000

Use place value equipment to support unitising for division.

15 ones put into groups of 3 ones. There are 5 groups.
$15 \div 3=5$

15 tens put into groups of 3 tens. There are 5 groups.
$150 \div 30=5$
To divide by 1000 , the digits move spaces to the right.

．

$$
8
$$

2－digit number divided by 1－digit
number，no remainders（flexible
$48 \div 2=?$

Partition the divide
tens and one
is＿＿tens and
Divide the tens． Partition the div
tens and
is＿tens ar
Divide the tens．

partitioning）

Dis
Partition the dividend into tens and ones．

$$
40 \div 2=?
$$

＿ones．震

$$
\square
$$

$$
\begin{align*}
40 \div 2 & =20 \\
8 \div 2 & =4 \\
20+4 & =24 \\
48 \div 2 & =24
\end{align*}
$$

\qquad

[^0]
\qquad

[^1][^2]

．
single digit by partitioning into 100s, 10s single digit by partitioning
and 1 s Partition into 100 s , ios and 1 s using a part-whole
Dividing up to 3-digit numbers by

\qquad

model to divide where appropriate.

?

$$
\begin{aligned}
& 100 \div 2=50 \\
& 40 \div 2=20 \\
& 6 \div 2=3 \\
& 50+20+3=73 \\
& 142 \div 2=73
\end{aligned}
$$

$$
100 \div 2=
$$

(x)

$$
\begin{aligned}
& 40 \\
& 2=\square \div 2=[
\end{aligned}
$$

$$
40 \div 2=\square
$$

$100 \div 2=\square 40 \div 2=\square$

$$
0
$$

路
-

.

$$
142 \div 2=?
$$

 $142 \div 2=?$

 $142 \div 2=?$
 -0.-

\square (4

50

.

(a)
arch

Understanding remainders

Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further.

Understand that the remainder is what cannot be put into an equal group.
There are 13 sticks in total. There are 3 groups of 4, with 1 remainder.

$$
22 \div 5=?
$$

5
10

15
20
25 (25 is more than 22)
There are 4 equal groups of 5 .
Count on from 20 to 22.
There are 2 remainders

$$
22 \div 5=4 r 2
$$

Dividend: divisor = quotient and remainder

2-digit number divided by 1-digit number, with remainders

Step 1: partition the dividend into tens and ones. __ones tens and

Step 2: divide the tens

Step 3: divide the ones
Write the remainder.

Partition to divide, understanding the remainder in context.

67 children try to make 5 equal lines.
$67=60+7$
$60 \div 5=12$
$7 \div 5=1$ remainder 2
$67 \div 5=13 r 2$
There are 13 children in each line and 2 children left out.

Dividing up to four digits by a single digit using short division (no exchange)

Use place value equipment on a place value grid alongside short division. $48 \div 4=?$
Divide the tens.
Write the quotient in the tens column

Divide the ones.
\bar{W} rite the quotient in the ones column*

There is 1 group of 4 tens.
There are 2 groups of 4 ones.
$48 \div 4=12$

Progress to up to 4 digits divided by a single digit as appropriate using short division.

3212
3
963

Link layout of formal method with language of number sentence.

Dividing up to four digits by a single Dividing Up to tour
digit using short div
exchange）

digit using short division（with

First，lay out the

\qquad

D

e

．

正

umber using long

-

\square
\qquad

\square

Dividing by a 2-digit nu division with multiples

$$
\begin{aligned}
& \text { Step 1: subtract } \\
& \text { known multiples of } \\
& \text { the divisor. } \\
& \text { Step 2: subtract the } \\
& \text { remaining multiples } \\
& \text { until you have } \\
& \text { reduced all of the } \\
& \text { dividend. } \\
& \text { Step 3: add the total } \\
& \text { Write the multiples. } \\
& \text { and any remainders }
\end{aligned}
$$

Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders

Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Use long division. Write the required multiples to support the
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders

Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders

Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders
Step 1: subtract
known multiples of
the divisor.
Step 2: subtract the
remaining multiples
until you have
reduced all of the
dividend.
Step 3: add the total
of the multiples.
Write the quotient
and any remainders

dividend.	
	1 1 7
	1

Step 1: subtract
known multiples of
the divisor.
$\begin{gathered}\text { Step 2: subtract the } \\ \text { remaining multiples } \\ \text { until you have } \\ \text { reduced all of the } \\ \text { dividend. } \\ \text { Step 3: add the total } \\ \text { of the multiples. } \\ \text { Write the quotient } \\ \text { and any remainders }\end{gathered}$
dives
Step 1: subtract Use long division. Write the

13	3	7	7
-			
-	1	3	0
2	4	7	
-	10		
	3	0	10
-	1	1	7
	1	7	9
		0	29

\qquad

.
\square

division process.

$$
377 \div 13=29
$$

\square
$=$
,

\qquad

-
\qquad

Dividing decimals

Set out the short division.

Divide the ones. \qquad \div (exchange where necessary) Write the remainder in the tenths column

Write the decimal point.
Divide the tenths. \qquad \div

- -

(exchange where necessary)
Write the remainder in the hundredths column*

Use place value equipment to explore division of decimals.

8 tenths divided into 4 groups.
There are 2 tenths in each group.
$0.8 \div 4=0.2$

Use short division to divide decimals with up to 2 decimal places.

Long division (formal method)

Understanding factors and prime
 Use equipment to explore the numbers

factors of a given number.

$24 \div 3=8$
$24 \div 8=3$
8 and 3 are factors of 24
because they divide 24 exactly.
$24 \div 5=4$ remainder 4 .

5 is not a factor of 24 because there is a remainder

I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder.

I know that 33 is a composite number (not a prime number) as it can be divided by 1, 3, 11 and 33.

I know that 1 is not a prime number, as it has only 1 factor.

[^0]: \qquad
 －

[^1]:

[^2]:

